Computing charge densities with partially reorthogonalized Lanczos

نویسندگان

  • Constantine Bekas
  • Yousef Saad
  • Murilo L. Tiago
  • James R. Chelikowsky
چکیده

This paper considers the problem of computing charge densities in a density functional theory (DFT) framework. In contrast to traditional, diagonalization-based, methods, we utilize a technique which exploits a Lanczos basis, without explicit reference to individual eigenvectors. The key ingredient of this new approach is a partial reorthogonalization strategy whose goal is to ensure a good level of orthogonality of the basis vectors. The experiments reveal that the method can be a few times faster than ARPACK, the implicit restart Lanczos method. This is achievable by exploiting more memory and BLAS3 (dense) computations while avoiding the frequent updates of eigenvectors inherent to all restarted Lanczos methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjusting the Rayleigh Quotient in Semiorthogonal Lanczos Methods

In a semiorthogonal Lanczos algorithm, the orthogonality of the Lanczos vectors is allowed to deteriorate to roughly the square root of the rounding unit, after which the current vectors are reorthogonalized. A theorem of Simon 4] shows that the Rayleigh quotient | i.e., the tridiagonal matrix produced by the Lanczos recursion | contains fully accurate approximations to the Ritz values in spite...

متن کامل

Adjusting the Rayleigh Quotient in Semiorthogonal Lanczos Methods Adjusting the Rayleigh Quotient in Semiorthogonal Lanczos Methods

In a semiorthogonal Lanczos algorithm, the orthogonality of the Lanczos vectors is allowed to deteriorate to roughly the square root of the rounding unit, after which the current vectors are reorthogonalized. A theorem of Simon 4] shows that the Rayleigh quotient | i.e., the tridiagonal matrix produced by the Lanczos recursion | contains fully accurate approximations to the Ritz values in spite...

متن کامل

Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduction

The Golub–Kahan–Lanczos (GKL) bidiagonal reduction generates, by recurrence, the matrix factorization of X ∈ Rm×n,m ≥ n, given by X = U BV T where U ∈ Rm×n is left orthogonal, V ∈ Rn×n is orthogonal, and B ∈ Rn×n is bidiagonal. When the GKL recurrence is implemented in finite precision arithmetic, the columns of U and V tend to lose orthogonality, making a reorthogonalization strategy necessary...

متن کامل

Brane-World charges

As opposed to usual Einstein gravity in four dimensions, the Brane-World scenario allows the construction of a local density of gravitational energy (and also of momentum, of angular momentum, etc. . . ). This is a direct consequence of the hypothesis that our universe is located at the boundary of a five-dimensional diffeomorphism invariant manifold. We compute these Brane-World densities of c...

متن کامل

Fast Computation of Spectral Densities for Generalized Eigenvalue Problems

The distribution of the eigenvalues of a Hermitian matrix (or of a Hermitian matrix pencil) reveals important features of the underlying problem, whether a Hamiltonian system in physics, or a social network in behavioral sciences. However, computing all the eigenvalues explicitly is prohibitively expensive for real-world applications. This paper presents two types of methods to efficiently esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2005